From: Roger Bagula on 5 Jul 2010 06:03 Q(x,y,z,t)=x2+y2+z2+t2+x*t+y*t+z*t is the lattice form of Korkine and Zolatarreff from Advanced Number Theory, Harvey Cohn, Dover Books,1963, Page 89 It has basis vectors: v1={1,0,0,0} v2={0,1,0,0} v3={0,0,1,0} v4={-1,-1,-1,2} If f(x)=3*x2+3*x*t+t2 there is a three fold symmetry 3*Q(x,y,z,t)=f(x)+f(y)+f(z) The interesting thing about this is that the 6 points the f(x) solutions give in the xt,yt,and zt planes are a 4d tetrahedron analog. The book says the basis is not L4 ( the Lebesque space that corresponds to quaternions I think). Suppose we modified the basis to the BBP basis: v1={1,0,0,0} v2={0,1,0,0} v3={0,0,1,0} v4={-1,-1,-2,4} symmetrically: Qa(x,y,z,t)=x2+y2+z2+t2+a*(+x*t+y*t+z*t) For Qa(-1,-1,-2,4)=1 a=21/16 but if we wanted a zero instead with basis: v1={1,-1,0,0} v2={0,1,-1,0} v3={-1,0,1,0} v4={-1,-1,-2,4} a=22/16 What is interesting about this solution is the symmetrical f(x) function: f(x)=x2+(22/16)*x+1/3 NSolve[x2+(22/16)*x+1/3 == 0, x, 200] {{x -> -1.060759851399352441346798231263585251186320444243821280292248019186263135567132\ 691891509793852633503027207335442503575715165977293280598497030849082383617214\ 3772574038584767914544121341620522126880079}, {x -> -0.314240148600647558653201768736414748813679555756178719707751980813736864432\ 867308108490206147366496972792664557496424284834022706719401502969150917616382\ 7856227425961415232085455878658379477873119921}} which seem to confirm this geometry is related to Pi by the second root. Changing to at metric form: Qa(dx,dy,dz,dt)/dt2=dx/dt2+dy/dt2+dz/dt2+(22/16)*(dx/dt+dy/dt+dz/dt) we get the symmetrical velocity form: f(dx/dt)=dx/dt2+(22/16)*dx/dt+1/3 >From the solution of this equation as above we get the unlikely result that the speed of light in such a algebraic lattice four space would be related to Pi. It also gives the algebraic approximation of Pi as: NSolve[48*x2 - 660*x + 1600 == 0, x, 200] {{x -> 3.142401486006475586532017687364147488136795557561787197077519808137368\ 644328673081084902061473664969727926645574964242848340227067194015029691509176\ 1638278562274259614152320854558786583794778731199213267030945398`199.\ 18531771111554}, {x -> \ 10.607598513993524413467982312635852511863204442438212802922480191862631355671\ 326918915097938526335030272073354425035757151659772932805984970308490823836172\ 1437725740385847679145441213416205221268800786732969054602`199.34429463799816}\ } I was wondering if there were some way we could visualize this geometry? Respectfully, Roger L. Bagula
From: Roger Bagula on 5 Jul 2010 21:14 I used a minimal surface embedding of a sphere to get this visualization: x = Cos[t0]*Sin[p0]; y = Sin[t0]*Sin[p0]; z = Cos[p0]; x1 = Re[Integrate[x^2 + (22/16)*x*t + 1/3, {p0, 0, t}]]; y1 = Re[Integrate[y^2 + (22/16)*y*t + 1/3, {p0, 0, t}]]; z1 = Re[Integrate[z^2 + (22/16)*z*t + 1/3, {p0, 0, t}]]; g1 = ParametricPlot3D[{x1, y1, z1}, {t, 0, 2*Pi}, {t0, 0, 2*Pi}] g2 = ParametricPlot3D[{x1, y1, z1}, {t, -2*Pi, 0}, {t0, 0, 2*Pi}] g3 = ParametricPlot3D[{x1, y1, -z1}, {t, 0, 2*Pi}, {t0, -2*Pi, 0}] g4 = ParametricPlot3D[{x1, y1, -z1}, {t, -2*Pi, 0}, {t0, -2*Pi, 0}] Show[{g1, g2}, Boxed -> False, Axes -> False] Show[{g3, g4}, Boxed -> False, Axes -> False] Kind of a cludge, but better than nothing. Roger Bagula
From: Roger Bagula on 5 Jul 2010 21:15 I just now got a better rendering: http://www.flickr.com/photos/fractalmusic/4764898936/ x = Cos[t0]*Sin[p0]; y = Sin[t0]*Sin[p0]; z = Cos[p0]; x1 = Re[Integrate[x^2 + (22/16)*x + 1/3, {p0, 0, t}]]; y1 = Re[Integrate[y^2 + (22/16)*y + 1/3, {p0, 0, t}]]; z1 = Re[Integrate[z^2 + (22/16)*z + 1/3, {p0, 0, t}]]; g1 = ParametricPlot3D[{x1, y1, z1, { EdgeForm[]}}, {t, 0, 2*Pi}, {t0, 0, 2*Pi}, PlotRange -> All, PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] g2 = ParametricPlot3D[{x1, y1, z1, {EdgeForm[]}}, {t, -2*Pi, 0}, {t0, 0, 2*Pi}, PlotRange - > All, \ PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] g3 = ParametricPlot3D[{x1, y1, -z1, {EdgeForm[]}}, {t, 0, 2*Pi}, {t0, -2* Pi, 0}, PlotRange -> All, PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] g4 = ParametricPlot3D[{x1, y1, - z1, {EdgeForm[]}}, {t, -2*Pi, 0}, {t0, -2*Pi, 0}, PlotRange -> All, \ PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] Show[{g1, g2}, Boxed -> False, Axes -> False] Show[{g3, g4}, Boxed -> False, Axes -> False]
|
Pages: 1 Prev: SyntaxInformation Question Next: FindRoot with parameterized interpolated function |